Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pharmacogenomics J ; 22(5-6): 294-302, 2022 12.
Article in English | MEDLINE | ID: covidwho-2050328

ABSTRACT

Available drugs have been used as an urgent attempt through clinical trials to minimize severe cases of hospitalizations with Coronavirus disease (COVID-19), however, there are limited data on common pharmacogenomics affecting concomitant medications response in patients with comorbidities. To identify the genomic determinants that influence COVID-19 susceptibility, we use a computational, statistical, and network biology approach to analyze relationships of ineffective concomitant medication with an adverse effect on patients. We statistically construct a pharmacogenetic/biomarker network with significant drug-gene interactions originating from gene-disease associations. Investigation of the predicted pharmacogenes encompassing the gene-disease-gene pharmacogenomics (PGx) network suggests that these genes could play a significant role in COVID-19 clinical manifestation due to their association with autoimmune, metabolic, neurological, cardiovascular, and degenerative disorders, some of which have been reported to be crucial comorbidities in a COVID-19 patient.


Subject(s)
COVID-19 Drug Treatment , Humans , Data Mining , Pharmacogenetics , Genomics
2.
NAR Genom Bioinform ; 3(4): lqab090, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1532532

ABSTRACT

Extracting and processing information from documents is of great importance as lots of experimental results and findings are stored in local files. Therefore, extracting and analyzing biomedical terms from such files in an automated way is absolutely necessary. In this article, we present OnTheFly2.0, a web application for extracting biomedical entities from individual files such as plain texts, office documents, PDF files or images. OnTheFly2.0 can generate informative summaries in popup windows containing knowledge related to the identified terms along with links to various databases. It uses the EXTRACT tagging service to perform named entity recognition (NER) for genes/proteins, chemical compounds, organisms, tissues, environments, diseases, phenotypes and gene ontology terms. Multiple files can be analyzed, whereas identified terms such as proteins or genes can be explored through functional enrichment analysis or be associated with diseases and PubMed entries. Finally, protein-protein and protein-chemical networks can be generated with the use of STRING and STITCH services. To demonstrate its capacity for knowledge discovery, we interrogated published meta-analyses of clinical biomarkers of severe COVID-19 and uncovered inflammatory and senescence pathways that impact disease pathogenesis. OnTheFly2.0 currently supports 197 species and is available at http://bib.fleming.gr:3838/OnTheFly/ and http://onthefly.pavlopouloslab.info.

3.
Front Immunol ; 12: 746203, 2021.
Article in English | MEDLINE | ID: covidwho-1477828

ABSTRACT

The reasons behind the clinical variability of SARS-CoV-2 infection, ranging from asymptomatic infection to lethal disease, are still unclear. We performed genome-wide transcriptional whole-blood RNA sequencing, bioinformatics analysis and PCR validation to test the hypothesis that immune response-related gene signatures reflecting baseline may differ between healthy individuals, with an equally robust antibody response, who experienced an entirely asymptomatic (n=17) versus clinical SARS-CoV-2 infection (n=15) in the past months (mean of 14 weeks). Among 12.789 protein-coding genes analysed, we identified six and nine genes with significantly decreased or increased expression, respectively, in those with prior asymptomatic infection relatively to those with clinical infection. All six genes with decreased expression (IFIT3, IFI44L, RSAD2, FOLR3, PI3, ALOX15), are involved in innate immune response while the first two are interferon-induced proteins. Among genes with increased expression six are involved in immune response (GZMH, CLEC1B, CLEC12A), viral mRNA translation (GCAT), energy metabolism (CACNA2D2) and oxidative stress response (ENC1). Notably, 8/15 differentially expressed genes are regulated by interferons. Our results suggest that subtle differences at baseline expression of innate immunity-related genes may be associated with an asymptomatic disease course in SARS-CoV-2 infection. Whether a certain gene signature predicts, or not, those who will develop a more efficient immune response upon exposure to SARS-CoV-2, with implications for prioritization for vaccination, warrant further study.


Subject(s)
Antibodies, Viral/blood , Asymptomatic Infections , Immunity, Innate/genetics , SARS-CoV-2/immunology , Transcriptome/genetics , Adult , COVID-19/pathology , Female , Gene Expression Profiling , Humans , Immunity, Innate/immunology , Male , RNA, Messenger/genetics , Sequence Analysis, RNA , Severity of Illness Index
4.
Nucleic Acids Res ; 49(W1): W36-W45, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1387964

ABSTRACT

Efficient integration and visualization of heterogeneous biomedical information in a single view is a key challenge. In this study, we present Arena3Dweb, the first, fully interactive and dependency-free, web application which allows the visualization of multilayered graphs in 3D space. With Arena3Dweb, users can integrate multiple networks in a single view along with their intra- and inter-layer connections. For clearer and more informative views, users can choose between a plethora of layout algorithms and apply them on a set of selected layers either individually or in combination. Users can align networks and highlight node topological features, whereas each layer as well as the whole scene can be translated, rotated and scaled in 3D space. User-selected edge colors can be used to highlight important paths, while node positioning, coloring and resizing can be adjusted on-the-fly. In its current version, Arena3Dweb supports weighted and unweighted undirected graphs and is written in R, Shiny and JavaScript. We demonstrate the functionality of Arena3Dweb using two different use-case scenarios; one regarding drug repurposing for SARS-CoV-2 and one related to GPCR signaling pathways implicated in melanoma. Arena3Dweb is available at http://bib.fleming.gr:3838/Arena3D or http://bib.fleming.gr/Arena3D.


Subject(s)
Algorithms , Data Visualization , Internet , Protein Interaction Maps , Software , COVID-19/metabolism , Color , Drug Repositioning , Humans , Melanoma/drug therapy , Melanoma/metabolism , Programming Languages , Receptors, Endothelin/metabolism , SARS-CoV-2/metabolism , Signal Transduction , COVID-19 Drug Treatment
5.
mSphere ; : e0018021, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1288358

ABSTRACT

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly during the first months of 2020 and continues to expand in multiple areas across the globe. Molecular epidemiology has provided an added value to traditional public health tools by identifying SARS-CoV-2 clusters or providing evidence that clusters based on virus sequences and contact tracing are highly concordant. Our aim was to infer the levels of virus importation and to estimate the impact of public health measures related to travel restrictions to local transmission in Greece. Our phylogenetic and phylogeographic analyses included 389 full-genome SARS-CoV-2 sequences collected during the first 7 months of the pandemic in Greece and a random collection in five replicates of 3,000 sequences sampled globally, as well as the best hits to our data set identified by BLAST. Phylogenetic trees were reconstructed by the maximum likelihood method, and the putative source of SARS-CoV-2 infections was inferred by phylogeographic analysis. Phylogenetic analyses revealed the presence of 89 genetically distinct viruses identified as independent introductions into Greece. The proportion of imported strains was 41%, 11.5%, and 8.8% during the three periods of sampling, namely, March (no travel restrictions), April to June (strict travel restrictions), and July to September (lifting of travel restrictions based on thorough risk assessment), respectively. The results of phylogeographic analysis were confirmed by a Bayesian approach. Our findings reveal low levels of onward transmission from imported cases during summer and underscore the importance of targeted public health measures that can increase the safety of international travel during a pandemic. IMPORTANCE Our study based on current state-of-the-art molecular epidemiology methods suggests that virus screening and public health measures after the lifting of travel restrictions prevented SARS-CoV-2 onward transmission from imported cases during summer 2020 in Greece. These findings provide important data on the efficacy of targeted public health measures and have important implications regarding the safety of international travel during a pandemic. Our results can provide a roadmap about prevention policy in the future regarding the reopening of borders in the presence of differences in vaccination coverage, the circulation of the virus, and the presence of newly emergent variants across the globe.

SELECTION OF CITATIONS
SEARCH DETAIL